Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a AgxPd1−x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2 −D2 exchange kinetics were measured at atmospheric pressure on AgxPd1−x catalysts over a temperature range of 333−593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from −6.2 eV for pure Ag to −3.4 eV for pure Pd. At all reaction conditions, the H2 −D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with xPd < 0.58. Measured H2 −D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H′) mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔEads ‡ , associative desorption, ΔEdes ‡ , and the surface-to-subsurface diffusion energy, ΔEss, as a function of alloy composition, xPd. The 2H′ mechanism predicts ΔEads ‡ = 0−10 kJ/mol, ΔEdes ‡ = 30−65 kJ/mol, and ΔEss = 20−30 kJ/mol for all alloy compositions with xPd ≥ 0.64, including for the pure Pd catalyst (i.e., xPd = 1). For these Pd-rich catalysts, ΔEdes ‡ and ΔEss appeared to increase by ∼5 kJ/mol with decreasing xPd. However, due to the coupling of kinetic parameters in the 2H′ mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when xPd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2 −D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing xPd can be explained by a reduction in the availability of surface Pd at high Ag compositions.more » « less
-
Structure sensitive enantioselectivity on surfaces: tartaric acid on all surfaces vicinal to Cu(111)Comprehensive mapping of enantiospecific surface reactivity versus the crystallographic orientation of Cu( hkl ) surfaces vicinal to Cu(111) has been conducted using a spherically shaped single crystal on which the surface normal vectors, [ hkl ], span all possible orientations lying with 14° of the [111] direction. This has allowed direct measurement on 169 different Cu( hkl ) surfaces of the two rate constants, k (hkl)i and k (hkl)e, that determine the kinetics of the vacancy-mediated, explosive decomposition of tartaric acid (TA). The initiation rate constant, k (hkl)i, quantifies the kinetics of an initiation step that creates vacancies in the adsorbed TA monolayer. The explosion rate constant, k (hkl)e, quantifies the kinetics of a vacancy-mediated explosion step that results in TA decomposition and product desorption. Enantiospecificity is revealed by the dependence of TA decomposition kinetics on the chirality of the local surface orientation. Diastereomerism is demonstrated by the fact that d -TA is more reactive than l -TA on S surfaces while l -TA is more reactive on R surfaces. The time to reach half coverage, t (hkl)1/2, during isothermal TA decomposition at 433 K allowed determination of the most enantiospecific surface orientation; Cu(754). The ideal Cu(754) surface structure consists of (111) terraces separated by monoatomic steps formed by the (100) and (110) microfacets.more » « less
An official website of the United States government

Full Text Available